Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS One ; 18(3): e0283373, 2023.
Article in English | MEDLINE | ID: covidwho-2288515

ABSTRACT

BACKGROUND: Burnout is a widespread occupational phenomenon among nurses with significant adverse outcomes for nurses, patients, and society. It is thus important and urgent to understand burnout and its risk factors to guide interventions. This study aimed to examine the level of burnout and explore its individual and environmental correlates. METHODS: This cross-sectional study was conducted in Hunan, China. A total of 623 hepatological surgery nurses completed an online survey (response rate: 72.78%). Burnout was measured using the standard Maslach Burnout Inventory (MBI). Information on individual factors and environmental factors was collected by self-designed questionnaires. RESULTS: The scores of emotional exhaustion, depersonalization, and personal achievement in nurse burnout were 30 (26-34), 11 (8-14), and 23 (20-26) respectively. The prevalence of high burnout ranged from 52.81% for emotional exhaustion to 90.37% for decreased personal achievement. The three dimensions of burnout shared common correlates such as self-rated physical health and working environment, while also having additional unique correlates such as overwork, satisfaction with income, and age. CONCLUSION: Hepatological surgery nurses in Hunan Province are suffering from high levels of burnout, which requires public attention and urgent interventions. Improvement of the physical health and working environment of nurses may be the most beneficial intervention measures to tackle various dimensions of burnout, while other targeted measures are also needed for each specific dimension.


Subject(s)
Burnout, Professional , Nurses , Humans , Cross-Sectional Studies , Burnout, Professional/epidemiology , Burnout, Professional/psychology , Burnout, Psychological , China/epidemiology , Risk Factors , Surveys and Questionnaires
2.
Front Pharmacol ; 13: 865097, 2022.
Article in English | MEDLINE | ID: covidwho-2113647

ABSTRACT

Objective: People suffering from coronavirus disease 2019 (COVID-19) are prone to develop pulmonary fibrosis (PF), but there is currently no definitive treatment for COVID-19/PF co-occurrence. Kaempferol with promising antiviral and anti-fibrotic effects is expected to become a potential treatment for COVID-19 and PF comorbidities. Therefore, this study explored the targets and molecular mechanisms of kaempferol against COVID-19/PF co-occurrence by bioinformatics and network pharmacology. Methods: Various open-source databases and Venn Diagram tool were applied to confirm the targets of kaempferol against COVID-19/PF co-occurrence. Protein-protein interaction (PPI), MCODE, key transcription factors, tissue-specific enrichment, molecular docking, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to clarify the influential molecular mechanisms of kaempferol against COVID-19 and PF comorbidities. Results: 290 targets and 203 transcription factors of kaempferol against COVID-19/PF co-occurrence were captured. Epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha serine/threonine-protein kinase (AKT1), transcription factor p65 (RELA) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) were identified as the most critical targets, and kaempferol showed effective binding activities with the above critical eight targets. Further, anti-COVID-19/PF co-occurrence effects of kaempferol were associated with the regulation of inflammation, oxidative stress, immunity, virus infection, cell growth process and metabolism. EGFR, interleukin 17 (IL-17), tumor necrosis factor (TNF), hypoxia inducible factor 1 (HIF-1), phosphoinositide 3-kinase/AKT serine/threonine kinase (PI3K/AKT) and Toll-like receptor signaling pathways were identified as the key anti-COVID-19/PF co-occurrence pathways. Conclusion: Kaempferol is a candidate treatment for COVID-19/PF co-occurrence. The underlying mechanisms may be related to the regulation of critical targets (EGFR, SRC, MAPK3, MAPK1, MAPK8, AKT1, RELA, PIK3CA and so on) and EGFR, IL-17, TNF, HIF-1, PI3K/AKT and Toll-like receptor signaling pathways. This study contributes to guiding development of new drugs for COVID-19 and PF comorbidities.

3.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1897880

ABSTRACT

Objective: People suffering from coronavirus disease 2019 (COVID-19) are prone to develop pulmonary fibrosis (PF), but there is currently no definitive treatment for COVID-19/PF co-occurrence. Kaempferol with promising antiviral and anti-fibrotic effects is expected to become a potential treatment for COVID-19 and PF comorbidities. Therefore, this study explored the targets and molecular mechanisms of kaempferol against COVID-19/PF co-occurrence by bioinformatics and network pharmacology. Methods: Various open-source databases and Venn Diagram tool were applied to confirm the targets of kaempferol against COVID-19/PF co-occurrence. Protein-protein interaction (PPI), MCODE, key transcription factors, tissue-specific enrichment, molecular docking, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to clarify the influential molecular mechanisms of kaempferol against COVID-19 and PF comorbidities. Results: 290 targets and 203 transcription factors of kaempferol against COVID-19/PF co-occurrence were captured. Epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha serine/threonine-protein kinase (AKT1), transcription factor p65 (RELA) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) were identified as the most critical targets, and kaempferol showed effective binding activities with the above critical eight targets. Further, anti-COVID-19/PF co-occurrence effects of kaempferol were associated with the regulation of inflammation, oxidative stress, immunity, virus infection, cell growth process and metabolism. EGFR, interleukin 17 (IL-17), tumor necrosis factor (TNF), hypoxia inducible factor 1 (HIF-1), phosphoinositide 3-kinase/AKT serine/threonine kinase (PI3K/AKT) and Toll-like receptor signaling pathways were identified as the key anti-COVID-19/PF co-occurrence pathways. Conclusion: Kaempferol is a candidate treatment for COVID-19/PF co-occurrence. The underlying mechanisms may be related to the regulation of critical targets (EGFR, SRC, MAPK3, MAPK1, MAPK8, AKT1, RELA, PIK3CA and so on) and EGFR, IL-17, TNF, HIF-1, PI3K/AKT and Toll-like receptor signaling pathways. This study contributes to guiding development of new drugs for COVID-19 and PF comorbidities.

4.
Comput Biol Med ; 146: 105601, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850901

ABSTRACT

BACKGROUND: The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. METHODS: The "Limma" package or "DESeq2" package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. RESULTS: 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. CONCLUSIONS: This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.


Subject(s)
Asthma , COVID-19 , Asthma/genetics , Bronchoalveolar Lavage Fluid , COVID-19/genetics , Computational Biology , DEAD-box RNA Helicases , Gene Expression Profiling , Humans , Hydrogen Peroxide , Interferon Regulatory Factors/genetics , Protein Interaction Maps/genetics , SARS-CoV-2 , Serine-Arginine Splicing Factors/genetics
5.
Environ Sci Process Impacts ; 24(5): 649-674, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1778646

ABSTRACT

The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).


Subject(s)
COVID-19 , Pandemics , Animals , COVID-19/prevention & control , Humans , Life Cycle Stages , Pandemics/prevention & control , Plastics , SARS-CoV-2
6.
Front Immunol ; 12: 769011, 2021.
Article in English | MEDLINE | ID: covidwho-1650341

ABSTRACT

Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein-protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K-AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible "dangerous liaison" between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Antiviral Agents/metabolism , Asthma/epidemiology , Asthma/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Immunologic Factors/metabolism , Luteolin/metabolism , SARS-CoV-2/metabolism , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antiviral Agents/chemistry , Comorbidity , Computational Biology/methods , Drug Discovery/methods , Humans , Immunologic Factors/chemistry , Interleukin-6/metabolism , Luteolin/chemistry , Molecular Docking Simulation , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Serum Albumin, Human/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor A/metabolism
7.
J Transl Med ; 19(1): 528, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1638964

ABSTRACT

BACKGROUND: Emerging evidence shows that periodontal disease (PD) may increase the risk of Coronavirus disease 2019 (COVID-19) complications. Here, we undertook a two-sample Mendelian randomization (MR) study, and investigated for the first time the possible causal impact of PD on host susceptibility to COVID-19 and its severity. METHODS: Summary statistics of COVID-19 susceptibility and severity were retrieved from the COVID-19 Host Genetics Initiative and used as outcomes. Single nucleotide polymorphisms associated with PD in Genome-wide association study were included as exposure. Inverse-variance weighted (IVW) method was employed as the main approach to analyze the causal relationships between PD and COVID-19. Three additional methods were adopted, allowing the existence of horizontal pleiotropy, including MR-Egger regression, weighted median and weighted mode methods. Comprehensive sensitivity analyses were also conducted for estimating the robustness of the identified associations. RESULTS: The MR estimates showed that PD was significantly associated with significantly higher susceptibility to COVID-19 using IVW (OR = 1.024, P = 0.017, 95% CI 1.004-1.045) and weighted median method (OR = 1.029, P = 0.024, 95% CI 1.003-1.055). Furthermore, it revealed that PD was significantly linked to COVID-19 severity based on the comparison of hospitalization versus population controls (IVW, OR = 1.025, P = 0.039, 95% CI 1.001-1.049; weighted median, OR = 1.030, P = 0.027, 95% CI 1.003-1.058). No such association was observed in the cohort of highly severe cases confirmed versus those not hospitalized due to COVID-19. CONCLUSIONS: We provide evidence on the possible causality of PD accounting for the susceptibility and severity of COVID-19, highlighting the importance of oral/periodontal healthcare for general wellbeing during the pandemic and beyond.


Subject(s)
COVID-19 , Periodontal Diseases , COVID-19/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Periodontal Diseases/complications , Periodontal Diseases/genetics , Polymorphism, Single Nucleotide
8.
Adv Manuf ; 9(1): 130-135, 2021.
Article in English | MEDLINE | ID: covidwho-1018548

ABSTRACT

The World Health Organization emphasized the importance of goggles and face shields for protection of medical personnel at the outbreak of the COVID-19 pandemic. Unsurprisingly, almost all countries suffered from a critical supply shortage of goggles and face shields, as well as many other types of personal protective equipment (PPE), for a long period, owing to the lack of key medical material supplies and the inefficiency of existing fabrication methods arising from the need to avoid crowds during the outbreak of COVID-19. In this paper, we propose a novel combined shield design for eye and face protection that can be rapidly fabricated using three-dimensional printing technology. The designed prototype eye-face shield is accessible to the general public, offering more possibilities for yield improvement in PPE during emergent infectious disease events such as COVID-19.

9.
J Clin Lab Anal ; 34(10): e23562, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-746160

ABSTRACT

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) often suffer sudden deterioration of disease around 1-2 weeks after onset. Once the disease progressed to severe phase, clinical prognosis of patients will significantly deteriorate. METHODS: This was a multicenter retrospective study on patients of all adult inpatients (≥18 years old) from Tianyou Hospital (Wuhan, China) and the Fourth Affiliated Hospital, Zhejiang University School of Medicine. All 139 patients had laboratory-confirmed COVID-19 in their early stage, which is defined as within 7 days of clinical symptoms. Univariate and multivariate logistic regression models were used to determine the predictive factors in the early detection of patients who may subsequently develop into severe cases. RESULTS: Multivariable logistic regression analysis showed that the higher level of hypersensitivity C-reactive protein (OR = 4.77, 95% CI:1.92-11.87, P = .001), elevated alanine aminotransferase (OR = 6.87, 95%CI:1.56-30.21, P = .011), and chronic comorbidities (OR = 11.48, 95% CI:4.44-29.66, P < .001) are the determining risk factors for the progression into severe pneumonia in COVID-19 patients. CONCLUSION: Early COVID-19 patients with chronic comorbidities, elevated hs-CRP or elevated ALT are significantly more likely to develop severe pneumonia as the disease progresses. These risk factors may facilitate the early diagnosis of critical patients in clinical practice.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Adult , Aged , Betacoronavirus , COVID-19 , China , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Critical Illness , Cytokine Release Syndrome , Early Diagnosis , Female , Humans , Male , Middle Aged , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Predictive Value of Tests , Retrospective Studies , Risk Factors , SARS-CoV-2
10.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2265-2274, 2020 May.
Article in Chinese | MEDLINE | ID: covidwho-398790

ABSTRACT

In December 2019, an outbreak of viral pneumonia began in Wuhan, Hubei Province, which caused the spread of infectious pneumonia to a certain extent in China and neighboring countries and regions, and triggered the epidemic crisis. The coronavirus disease 2019(COVID-19) is an acute respiratory infectious disease listed as a B infectious disease, which is managed according to standards for A infectious disease. Traditional Chinese medicine and integrated traditional Chinese and Western medicine have played an active role in the prevention and control of this epidemic. China's ethnomedicine has recognized infectious diseases since ancient times, and formed a medical system including theory, therapies, formula and herbal medicines for such diseases. Since the outbreak of the COVID-19 epidemic, Tibet Autonomous Region, Qinghai Province, Inner Mongolia Autonomous Region, Xinjiang Uygur Autonomous Region and Chuxiong Autonomous Prefecture of Yunnan, Qiandongnan Autonomous Prefecture of Guizhou have issued the prevention and control programs for COVID-19 using Tibetan, Mongolian, Uygur, Yi and Miao medicines. These programs reflect the wisdom of ethnomedicine in preventing and treating diseases, which have successfully extracted prescriptions and preventive measures for the outbreak of the epidemic from their own medical theories and traditional experiences. In this paper, we summarized and explained the prescriptions and medicinal materials of ethnomedicine in these programs, and the origin of Tibetan medicine prescriptions and Mongolian medicine prescriptions in ancient books were studied. These become the common characteristics of medical prevention and treatment programs for ethnomedicine to formulate therapeutic programs under the guidance of traditional medicine theories, recommend prescriptions and prevention and treatment methods with characteristics of ethnomedicine, and focus on the conve-nience and standardization. However, strengthening the support of science and technology and the popularization to the public, and improving the participation of ethnomedicine in national public health services and the capacity-building to deal with sudden and critical diseases are key contents in the development of ethnomedicine in the future.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , COVID-19 , China , Humans , Medicine, Traditional , Pandemics , SARS-CoV-2 , Tibet , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL